2.2: Heliocentrism vs. Geocentrism: A Case Study

The difficulty with applying the scientific method to this type of astronomical “experiment” is that one cannot “experiment” on this big of a system. There is no “control group.” However, we can still use the structure of the method to show how, over several centuries and several countries in Europe, heliocentrism became the norm.

Hypothesis: The First Modern Statement of the Theory

A Pole with the Latin pen name Nicolaus Copernicus (1473-1543) determined that the best way to explain all the “odd” astronomical data was to switch the positions of the Sun and the Earth. Poland was (and still is) a predominantly-Catholic country in Eastern Europe, so for much of his life Copernicus kept this theory to himself. Copernicus did not want to question the Church and be subject to persecution (or worse) from Poland’s secular leadership, especially as the Reformation spread throughout Europe.

Copernicus was not the first to profess of the heliocentric theory: some ancient and even medieval writers wrote about this possibility: Most labeled it as nonsense after weighing it with the common sense, beauty, and sense of self-worth attained from geocentrism.

Copernicus was convinced throughout his mature life that heliocentrism was the correct theory to describe the movement of the Earth and the Sun—however, the data still did not “match” perfectly, even with a heliocentric Earth-Sun swap in the system.

Nonetheless, Copernicus wanted to publish his views, and he did so in 1543, the last year of his life. He did this intentionally, as he knew he was dying and therefore knew that the Church couldn’t persecute him too much—on this planet, at least. Approving the final proofs of his book (On the Revolutions of the Heavenly Bodies) from his death-bed, Copernicus died before the book came out. However, as he had suspected, the Church was not pleased: Church officials placed the book on the Index.

The Data: Galileo Galilei and His Telescope

Throughout the next century, the “Copernican system” (as heliocentrism was now called) gathered more and more followers among the small new “scientific” community. This was especially true after more sophisticated observations emerged from the development of the telescope. However, it should be noted that, throughout the 17th century, the common people had not yet “converted,” as the theory still seemed like nonsense, especially when the Church labeled it as incorrect.

Though the telescope originally arrived in Europe through Holland, an Italian scientist, Galileo Galilei (1564-1642), perfected it and first aimed it at the night-time sky for scientific purposes. What he discovered was a major blow to Aristotelianism: the moon and the Sun were not perfect spheres but had ridges, mountains, and “sunspots” (first seen by Galileo and, many historians suspect, the cause of his later blindness).

The biggest observation that started to convert some in the scientific community to heliocentrism, however, was the published discovery of new moons. In his book The Starry Messenger (1610), Galileo wrote of sightings of four moons of Jupiter, which he named after his patrons, calling them “the Medicean Stars.” (Does that name look familiar from Chapter 1?) The fact that Galileo observed moons orbiting around a planet that was not Earth directly contradicted Aristotle’s and the Church’s position that the Earth was the center of everything in the universe. Jupiter was now seen to have moons while revolving around the Sun itself. Why couldn’t the Earth’s motion be the same, especially if this new system better described the observations coming from telescopes all over Europe?

At that point in 1610, however, Galileo refrained from commenting on the significance of his theory, fearing Church retaliation. Galileo waited until a mathematician pope was in Rome (another 20 years and then some) before coming out strongly in favor of the Copernican system in his book written in Plato’s dialogue style: Dialogue Concerning Two Chief World Systems (1632). While the geocentric-favoring figure technically had the last word, it was clear from the text that the evidence for heliocentrism far outweighed the evidence for geocentrism.

Advocates of geocentrism, however, claimed that the telescopes were faulty, that Galileo twisted the data, or that God had put this new evidence as “a test” for believers’ true faith. The Church put the book on the Index and the Inquisition put Galileo on trial and showed him instruments of torture that could be used to “convince” him of the geocentric truth. Galileo backed down and publicly took back his views, but he did not escape punishment. Fearing that Galileo would flee to Protestant Northern Europe, Church officials placed him under house arrest: he was “grounded” for the rest of his life, conducting small inclined plane experiments as his eyesight continued to fail him.

The Mathematical “Conclusion”: the Law of Universal Gravitation

The Church was right to fear the continuation of Galileo’s work in the North. In Anglican England, a brilliant young mathematician and scientist named Isaac Newton (1643-1727) was convinced that heliocentrism described the true way God had set up the universe. (We might call Newton a “mystic” today, in addition to a scientist, as he spent just as much time on alchemy and determining the exact date/time of God’s Creation of the universe as he did on gravity.)

Newton undertook to develop a system of precise mathematical laws that would support heliocentrism and accurately describe the entirety of the data about the planets. Luckily, he was a genius and his Latin book Principia Mathematica (1687) presented some very convincing mathematical manipulation and argued for a new math-based law that would more accurately describe the entirety of the known universe: the Law of Universal Gravitation. With “gravity” guiding him, Newton was not just able to describe the past observations. He was able to predict future observations such as eclipses, something that had not been possible under any variant of the geocentric theory ever proposed.

With Newton’s findings, the world was literally flipped upside-down. By the mid-18th century, heliocentrism had prevailed and geocentrism was seen as a superstition of the past. Nonetheless, due to the ever-critical nature of the scientific method, major holes in Newton’s theory came to light relatively quickly: while Aristotle’s theory lasted more than 2000 years, the “truth” of Newton’s theory lasted 300 or so. (We used to see about this “relatively quick light” in Chapter 7. [Ask Greenfield about Einsteinian space-time if you want the full story.])

The “new world” of scientific questioning (and uncertainty) was in place, and nothing physical, chemical, or biological could ever again be viewed with complete faith (and therefore without skepticism).

(The Church was a little behind the curve, though: the Inquisition’s errors with Galileo were finally apologized for in 1992.)


13 thoughts on “2.2”

  1. What I find interesting is the growth from the Church back then to now. The Church back then was kind of like a cult it put a man on house arrest because he didn’t believe in their views.

  2. I think it’s surprising how much information the Church held back during that time. Since it had so much power, they could practically do whatever they want. Anyone who publically disagreed with them was in danger of persecution. They literally threatened to use torture instruments on Galileo just because he thought our Solar System was built differently. This is quite a vast difference from the Church as we know it today.

  3. It is fascinating how big of an impact Issac Newton’s findings had on the world. He was able to convince the majority of people against the common belief that they were the center of the universe.

  4. What I think is interesting is that the Church put Galileo on trial and showed him instruments of torture that could be used to “convince” him of the geocentric truth. And then they locked up him up for lif so he would not flee.

  5. It is intriguing how the Chruch at that time was more of propaganda. They would keep the truth silent and would publicly punish anyone for trying to disagree with it, almost like a tyrant.

  6. I think that it is crazy how strict the church was on their views. When I go to mass today priests talk about God loves everyone no matter what the their views on the world are. The church is an all inclusive place nowadays, but back then it was more of a one sided relationship where the church had all the say. The fact that these scientists experimented on these things for so much of their lives only to not be able to share their findings because they are scared for their punishment by the church. I just find it very interesting how different the church is portrayed and works in terms of inclusiveness and views of the world in the time period of Geocentrism and now.

  7. Why does the Church care so much about what the scientist are discovering? Isn’t the Church more focused on religion and not on whether the sun is moving or if the earth is moving?

  8. I think it’s pretty cool that people were not necessarily scared to find out the truth about the Earth revolving around the sun. It is also cool how the ideas of the scientists piggybacked off of each other which gave us the central idea that we believe today.

  9. I find it interesting how Newton’s findings led to a different result in terms of peoples opinions and views compared to other “natural philosophers”. I am curious about the actions that the Church took once people pushed aside the geocentric views that the Church has taught.

  10. It’s so fascinating how people took these theories, (that had no solid evidence behind them) and believed, and convinced others to believe in them so devoutly. These simple theories controlled people’s lives, and threatened to persecute non-believers. So much change has naturally occurred leading up to today, where scientific discoveries are backed up with evidence, and people still can’t be convinced.

  11. I find it interesting how the Church back then almost came across as “toxic”, with their limitations and the threats felt by others to even voice an idea or opinion. It is ironic how they are meant to be the most living community, but back then people were scared to speak out against them because of their fear of being persecuted or scolded.

  12. I find it funny how despite a pope who agreed with math in power, the church still found a way to shoot down the ideas of heliocentrism. I also find it odd how the church had a bunch of sinister-sounding names like the “Index” or the “Inquisition”.

Leave a Reply

Your email address will not be published.